Magnetic Resonance Imaging - traduction vers allemand
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Magnetic Resonance Imaging - traduction vers allemand

NON-DESTRUCTIVE TECHNIQUE FOR IMAGING INTERNAL STRUCTURES OF OBJECTS OR ORGANISMS
MRI; Magnetic Resonance Imaging; MRI scan; 1H-nuclear magnetic resonance spectroscopic imaging; NMR imaging; Magnetic resonance tomography; MRIs; MRI body scanner; MRI's; T2 (MRI); Contrast MRI; Mri; Zeugmatography; Mri scan; Nuclear scanning; Magnetic resonance image; MRI Scanner; MRI exam; Nuclear magnetic resonance imaging; Unsolved problems in diagnostic imaging; Open MRI; Magnetic Resonance Image; MRI scans; MRI-screen; Nuclear Magnetic Resonance Imaging; Magnetic resonance Imaging; EU Physical Agents (Electromagnetic Fields) Directive; T2 MRI; T2 weighted imaging; T2-weighted imaging; T2-weighted MRI; MRI machine; Magnetic resonance topography; MR scanning; Magnetic Resonance Tomography; T2*-weighted; Magnetic resonance urography; Magnetice resonance imaging; 3 Tesla MRI; 3-Tesla MRI; 3T MRI; 3 T MRI; 3-T MRI; Magnetic resonance images; Magnetic-resonance imaging; Proton density MRI; Spectral presaturation with inversion recovery; T2 weighted; Clinical MRI; Clinical NMRI; Clinical magnetic resonance imaging; T1-weighted; T2-weighted; Magnet resonance imaging
  • A mobile MRI unit visiting Glebefields Health Centre, [[Tipton]], England
  • Motion artifact (T1 coronal study of cervical vertebrae)<ref name="ErasmusHurter2004"/>
  • Schematic of construction of a cylindrical superconducting MR scanner
  • MR angiogram in congenital heart disease
  • Real-time MRI of a [[human heart]] at a resolution of 50&nbsp;ms
  • Patient being positioned for MR study of the head and abdomen
  • frameless
  • PD-weighted]] MRI scans
  • Effects of TR and TE on MR signal
  • MRI diffusion tensor imaging of [[white matter]] tracts

Magnetic Resonance Imaging         
n. Magnetische Resonanz Abbildung (Medizin)
Nuclear Magnetic Resonance         
  • Bruker 700&nbsp;MHz nuclear magnetic resonance (NMR) spectrometer.
  • Medical MRI
  • Schematic diagram of a NMR Stopped Flow Probe
  • Nuclear Magnetic Resonance (NMR) basic principles
  • Visualization of the ''T''<sub>1</sub> and ''T''<sub>2</sub> relaxation times.
ENERGY DIFFERENCE BETWEEN THE QUANTUM SPIN STATES OF ELECTRONS WHEN EXPOSED TO AN EXTERNAL MAGNETIC FIELD
Nuclear magnetic resonator spectrometer; NMR; Nmr; Nuclear Magnetic Resonance; Industrial magnetic resonance imaging
Nuklearmagnetische Resonanz, NMR, Darstellung von Wasserstoffatomkerne mit Hilfe hochfrequenter Radiowellen (Medizin)
magnetic disk         
  • HP-41-series]] (from 1979) could store data via an external magnetic tape storage device on [[microcassette]]s
  • Hard drives use magnetic memory to store giga- and terabytes of data in computers.
STORAGE OF DATA ON A MAGNETIZED MEDIUM
Magnetic medium; Magnetic recording; Magnetic disk; Magnetic Disk; Magnetic Recording; Magnetic media; Magnetic Media; Magnetic Storage; Magnetic disk access time; Longitudinal magnetic recording; Longitudinal Magnetic Recording; Longitudinal recording; Longitudinal Recording; Shingled Recording; Magnetic data storage; Longitudinal recording mode; Horizontal recording mode; Horizontal recording; History of magnetic storage; 100 tpi; 48 tpi; 96 tpi
Magnetplatte

Définition

magnetic resonance imaging
¦ noun a technique for producing images of bodily organs by measuring the response of atomic nuclei to radio waves when placed in a strong magnetic field.

Wikipédia

Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body. MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from CT and PET scans. MRI is a medical application of nuclear magnetic resonance (NMR) which can also be used for imaging in other NMR applications, such as NMR spectroscopy.

MRI is widely used in hospitals and clinics for medical diagnosis, staging and follow-up of disease. Compared to CT, MRI provides better contrast in images of soft-tissues, e.g. in the brain or abdomen. However, it may be perceived as less comfortable by patients, due to the usually longer and louder measurements with the subject in a long, confining tube, though "Open" MRI designs mostly relieve this. Additionally, implants and other non-removable metal in the body can pose a risk and may exclude some patients from undergoing an MRI examination safely.

MRI was originally called NMRI (nuclear magnetic resonance imaging), but "nuclear" was dropped to avoid negative associations. Certain atomic nuclei are able to absorb radio frequency energy when placed in an external magnetic field; the resultant evolving spin polarization can induce a RF signal in a radio frequency coil and thereby be detected. In clinical and research MRI, hydrogen atoms are most often used to generate a macroscopic polarization that is detected by antennas close to the subject being examined. Hydrogen atoms are naturally abundant in humans and other biological organisms, particularly in water and fat. For this reason, most MRI scans essentially map the location of water and fat in the body. Pulses of radio waves excite the nuclear spin energy transition, and magnetic field gradients localize the polarization in space. By varying the parameters of the pulse sequence, different contrasts may be generated between tissues based on the relaxation properties of the hydrogen atoms therein.

Since its development in the 1970s and 1980s, MRI has proven to be a versatile imaging technique. While MRI is most prominently used in diagnostic medicine and biomedical research, it also may be used to form images of non-living objects, such as mummies. Diffusion MRI and functional MRI extend the utility of MRI to capture neuronal tracts and blood flow respectively in the nervous system, in addition to detailed spatial images. The sustained increase in demand for MRI within health systems has led to concerns about cost effectiveness and overdiagnosis.

Exemples du corpus de texte pour Magnetic Resonance Imaging
1. Lauterbur, for the MRI, or magnetic resonance imaging. _Robert M.
2. They used repeated magnetic resonance imaging (MRI) scans from childhood to the latter teens.
3. At the same time, the volunteers‘ brains were scanned using functional magnetic resonance imaging.
4. Some women have been denied the advanced procedure (magnetic resonance imaging) altogether.
5. Scientists used functional magnetic resonance imaging to scan the activity in subjects‘ brains.